(Adapted from the National Council for Teachers of Mathematics (NCTM) document and NCTM Principles to Action resource book) Students and teachers should demonstrate a variety of these look-fors, not necessarily all of the descriptions that are listed. When appropriate, connections to the mathematical practices (MP#) and #CUTOUT4CS lessons (L1-5) has been indicated. | | Mathematical Practices | Students | Teachers | |--|---|---|--| | Habits of mind of a computational thinker (math thinker) | Persevere in solving problems (MP1) | Understand meaning of problem and look for entry points to solutions (L2, 3, 5) Analyze information (givens, constraints, relationships, goals) (L1, L2, L4, L6) Make conjectures and plan solution pathways (L4, L4) | □ Involve students in rich problem-based tasks that encourage them to persevere in order to reach solutions (L1-L5) □ Provide opportunities for students to solve problems that have multiple solutions (L1, L2, L3, L5) □ Encourage students to represent their thinking while problem solving (L3, L5) | | | Attend to prevision (MP6) | Calcualte accurately and efficiently, expressing numerical answers with a degree of precision (L3, L5) Provide carefully formulated explanations (L3, L5) | Encourage accuracy and efficiency in computation and problem-based solutions, expressing numerical answers, data, and/or measurements with a degree of precision appropriate for the context of the problem (L3, L5) | | Reasoning & Explaining | Reason abstractly and quantitatively (MP2) | Represent abstract situations symbolically and understand the meaning of quantities (L3, L5) Create a coherent representation of the problem at hand (L3, L5) | Facilitate opportunites for students to discuss or use representations to maek sense of quantities and their relationships (L3, L5) | | | Construct Viable arguments and critique the reasoning of others (MP3) | Communicate and defend mathematical reasoning using objects, drawings, diagrams, and/or actions (L2, L3, L4, L5) Listen or read the arguments of others (L4 launch) Decide if the arguments of others make sense and ask probing queations to clarify or improve the arguments (L3, L5) | Provide and orchestrate opportunities for students to listen to the solution strategies of others, discuss alternative solutions, and defend their ideas (L2, L3, L4, L5) | | Modeling &
Using Tools | Model with Mathematics (MP4) | □ Identify important quantities and map their relationship using tools as diagrams, two-way tables, graphs, flowcharts and/or formulas (L2, L3, L5) □ Check to see if an answer makes sense within the context of a situation and change a model when necessary (L1, L3, L5) | Remind students that a mathematical model used to represent a problem's solution is a "work in progress" and may be revised as needed (L3, L5) | | | Use appropriate tools strategically (MP5) | Make decisions about the use of specific tools (calculator, concrete model, digital technologies) (L2, L3, L5) Use technological tools to visualize the results of assumptions, explore consequences, and compare predictions with data (L2, L4) | Provide access to materials, models, tools and/or technology-based materials that assist students in making conjectures (L1, L5) | |-----------------------------------|---|---|---| | Seeing structure and generalizing | Look for and make use of structure (MP7) | □ Look for patterns or structure, recognizing that quantities can be represented in different ways (L1, L2, L3, L5) □ Recognize the significance in concepts and models and use the patterns or structure for solving related problems (L3, L5) | Engage students in discussions emphasizing relationships between particular topics within a content domain or across content domains (L1, L3, L4, L5) | | | Look for and express regularity in repeated reasoning (MP8) | Continually evaluate the reasonableness of intermediate results (comparing estimates), while attending to details, and make generalizations based on findings | □ Engage students in discussion related to repeated reasoning that may occur in a problem's solution (L1-5) □ Urge students to continually evaluate the reasonableness of their results (L3, L5) | ## **Look-Fors in Computer Science** ## (Adapted from the K-12 Computer Science Framework) Students and teachers should demonstrate a variety of these look-fors, not necessarily all of the descriptions that are listed. When appropriate, connections to the Practices Including Computational Thinking and #CUTOUT4CS lessons (L1-5) has been indicated. | Practices inc
Computational | | Students | Teachers | |---|---|--|--| | Recognizing and Decomputational Pro-
Solving a problem we computational appro-
defining the problem down into parts, and each part to determine computational solution appropriate. | thems (P3) ith a ach requires breaking it evaluating whether a | Ask clarifying questions to understand whether a problem or part of a problem can be solved using a computational approach. (L2, L4, L5) Identify and solve problems that involve multiple criteria and constraints. (L2, L4, L5) Evaluate whether a computational solution is the most appropriate solution for a particular problem. | Provide opportunities for students to break complex problems into smaller parts. Support students in evaluation parts to determine whether a computational solution is appropriate. | | Developing and Usi
Abstractions (P4) Identifying patterns of
common features to a
generalizations | ng und extracting | Recognize patterns within tasks and identify and describe releated sequences in data or code (L1, L2, L4) Identify common features in segments of code and substitute a single segment that uses variables to account for differences (L4) Draw pictures to descibe a simple patterns and/or represent patterns, processes, or pheonmena. (L3, L4, L5) | ☐ Involve students with opportunities to critically think about and explain segments of their code | | Creating Computate Artifacts (P5) Examples of compute artificats include prosimulations, visualize amintaions, robotic sapps. | utional
grams,
utions, digital | Participate in project planning and creation of brainstorming documents (L4) Develop artifacts in response to a task or computational problem. (L4) Attempt to use existing solutions to accomplish a desired goal (remix to develop something new). (L3, L5) | □ Facilitate computational tasks/problems with multiple solution pathways □ Provide opportunites for students to explore existing artifacts | | Testing and Refining Computational Artifacts (P6) Testing and refinement is the deliberate and iterative process of improving a computational artifact. | Compare results to intended outcomes and verfiy whether given criteria has been met (L3, L5) Identify and fix errors in programs (debugging) and use strategies to solve problems with computing systems (troubleshooting) | □ Faciliate conversations and sharing opportunities related to meeting criteria □ Engage in discussions related to sharing strategies for fixing errors in code | |--|---|--| | Communicating about Computing (P7) Communication invloces personal expression and exchanging ideas with others. | Present basic data through the use of visual representations (storyboards, flowcharts, graphs. (L2, L3, L5) Use precise language that articluates what they are doing Give and receive feedback about artifacts. | Provide opportunities for students to write clear comments, document work, and communicate ideas. |